The major specificity-determining amino acids of the tomato Cf-9 disease resistance protein are at hypervariable solvent-exposed positions in the central leucine-rich repeats.

نویسندگان

  • Brande B H Wulff
  • Antje Heese
  • Laurence Tomlinson-Buhot
  • David A Jones
  • Marcos de la Peña
  • Jonathan D G Jones
چکیده

The interaction between tomato and the leaf mold pathogen Cladosporium fulvum is controlled in a gene-for-gene manner by plant Cf genes that encode membrane-anchored extracytoplasmic leucine-rich repeat (LRR) glycoproteins, which confer recognition of their cognate fungal avirulence (Avr) proteins. Cf-9 and Cf-4 are two such proteins that are 91% identical yet recognize the sequence-unrelated fungal avirulence determinants Avr9 and Avr4, respectively. As shown previously, Cf-4 specificity is determined by three putative solvent-exposed residues in the central LRR and a deletion of two LRR relative to Cf-9. In this study, we focused on identifying the specificity determinants of Cf-9. We generated chimeras between Cf-9 and its close homologue Cf-9B and identified five amino acid residues that constitute major specificity determinants of Cf-9. Introduction of these residues into Cf-9B allowed recognition of Avr9. Consistent with a role in recognition specificity, the identified residues are putatively solvent exposed in the central LRR and occupy hypervariable positions in the global Cf alignment. One of the specificity residues is not found in any other known Cf protein, suggesting the importance of diversifying selection rather than sequence exchange between homologues. Interestingly, there is an overlap between the Cf-4 and Cf-9 specificity-determining residues, precluding a protein with dual specificity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Disease Resistance Specificities Result from Sequence Exchange between Tandemly Repeated Genes at the Cf-4/9Locus of Tomato

Tomato Cf genes confer resistance to C. fulvum, reside in complex loci carrying multiple genes, and encode predicted membrane-bound proteins with extracytoplasmic leucine-rich repeats. At least two Cf-9 homologs confer novel C. fulvum resistance specificities. Comparison of 11 genes revealed 7 hypervariable amino acid positions in a motif of the leucine-rich repeats predicted to form a beta-str...

متن کامل

Identification of distinct specificity determinants in resistance protein Cf-4 allows construction of a Cf-9 mutant that confers recognition of avirulence protein Avr4.

The tomato resistance genes Cf-4 and Cf-9 confer specific, hypersensitive response-associated recognition of Cladosporium carrying the avirulence genes Avr4 and Avr9, respectively. Cf-4 and Cf-9 encode type I transmembrane proteins with extracellular leucine-rich repeats (LRRs). Compared with Cf-9, Cf-4 lacks two LRRs and differs in 78 amino acid residues. To investigate the relevance of these ...

متن کامل

Domain swapping and gene shuffling identify sequences required for induction of an Avr-dependent hypersensitive response by the tomato Cf-4 and Cf-9 proteins.

The tomato Cf-4 and Cf-9 genes confer resistance to infection by the biotrophic leaf mold pathogen Cladosporium. Their protein products induce a hypersensitive response (HR) upon recognition of the fungus-encoded Avr4 and Avr9 peptides. Cf-4 and Cf-9 share >91% sequence identity and are distinguished by sequences in their N-terminal domains A and B, their N-terminal leucine-rich repeats (LRRs) ...

متن کامل

The Tomato Cf-2 Disease Resistance Locus Comprises Two Functional Genes Encoding Leucine-Rich Repeat Proteins

In plants, resistance to pathogens is frequently determined by dominant resistance genes, whose products are proposed to recognize pathogen-encoded avirulence gene (Avr) products. The tomato resistance locus Cf-2 was isolated by positional cloning and found to contain two almost identical genes, each conferring resistance to isolates of tomato leaf mould (C. fulvum) expressing the corresponding...

متن کامل

Structure-function analysis of cf-9, a receptor-like protein with extracytoplasmic leucine-rich repeats.

The tomato (Lycopersicon pimpinellifolium) resistance protein Cf-9 belongs to a large class of plant proteins with extracytoplasmic Leu-rich repeats (eLRRs). eLRR proteins play key roles in plant defense and development, mainly as receptor-like proteins or receptor-like kinases, conferring recognition of various pathogen molecules and plant hormones. We report here a large-scale structure-funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular plant-microbe interactions : MPMI

دوره 22 10  شماره 

صفحات  -

تاریخ انتشار 2009